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Abstract

This paper applies the acoustical wave propagator technique to wave packet propagation in a one-dimensional stepped

beam. The time-domain analytical solutions of this structure subjected to an initial-value problem with the specific

Gaussian waveform were derived and compared with the predicted results obtained by the acoustical wave propagator

technique. It is shown that this technique is efficient and accurate in predicting wave propagation in one-dimensional

structure with thickness discontinuity. The effects of near-field waves on reflection and transmission coefficients, and

transmission efficiencies are also studied in detail. Furthermore, an experiment was carried out to investigate the reflection

and transmission of flexural waves in a stepped beam structure.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Beams and struts are important structural elements and form the basis of many engineering frameworks
commonly found in shipbuilding, nuclear and aerospace industries. Wave propagation and reflection of elastic
waves in beams at discontinuities have recently received significant attention. Sato [1] studied free vibration of
beams with abrupt changes of cross-section. Afterwards, Doyle and his colleagues [2–3] used the exact
(frequency-dependent) dynamic stiffness matrix to investigate wave propagation in structures in conjunction
with the spectral analytical method. Lee [4–6] introduced the spectral transfer matrix method to investigate
vibration analysis of one-dimensional structures. Recently, Wang and Rose [7] presented an analytical
approach using higher-order plate theories to determine wave reflections and transmissions in beams
containing inhomogeneity. However, in many structures with discontinuities, exact analytical solutions of
time-domain wave motion are not available. It is therefore necessary to develop an effective and accurate
numerical method.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Most recently, Peng and Pan [8–12] applied the acoustical wave propagator (AWP) technique developed by
Pan and Wang [13] to study the time-domain wave propagation and dynamic stress concentration in two-
dimensional plate structures. Their work showed that the AWP technique combining the Chebyshev
polynomial expansions with fast Fourier transformation is highly accurate and computationally efficient. The
main motivation of this paper focuses on applying the AWP technique to flexural wave motion in one-
dimensional beam structures, and extending this technique to study reflection and transmission coefficients
and energy flow in a beam with a sharp change of section. In addition, the effects of the near-field waves on the
predicted results together with the thickness ratio of the beams on reflection and transmission in the vicinity of
the discontinuity boundary of the beam are studied in detail. Furthermore, the exact analytical solutions of
this structure impacted by an initial Gaussian wave packet are derived to compare with the predicted results
from the AWP technique. Finally, an experiment concerning the reflection and transmission of flexural wave
in a stepped beam structure with a finite beam and semi-infinite beam is presented and compared with
predictions based on the AWP technique.

2. Theory of the acoustical wave propagator technique in one-dimensional structures

2.1. Derivatives of the acoustical wave propagator e�ðt�t0ÞĤ

Consider a long thin beam with different cross-sections undergoing transverse motion as illustrated in
Fig. 1. This stepped beam structure is regarded as a common component of many practical engineering
structures due to a number of attractive features, such as material saving, weight reduction, stiffness
enhancing, designated strengthening, etc. Three assumptions are made in this paper: the width of the beam is
much less than its length; Poisson’s effect can be neglected; and the plane cross-sections initially perpendicular
to the axis of the beam remain plane and perpendicular to the neutral axis during bending.

According to the relationship between the bending moment and curvature, we have

qM

qt
¼ �EI

q2V

qx2
, (1)

where

E ¼ EðxÞ ¼
E1

E2

(

E1 and E2 represent the Young’s moduli of sub-beams 1 and 2, respectively; and

I ¼ IðxÞ ¼
I1

I2

(
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Fig. 1. Schematic of a stepped beam structure.
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I1 and I2 represent the cross-sectional area moments of inertia of sub-beams 1 and 2, respectively; V ðx; tÞ ¼
qW=qt is the velocity of the beam along the z-direction; and W(x, t) is the displacement of the beam in the
z-direction.

The governing equation for the motion of the structure is given by

rA
q2W

qt2
¼

q2M
qx2
þ Pðx0; tÞ, (2)

where

r ¼ rðxÞ ¼
r1
r2

(

r1 and r2 represent the densities of sub-beams 1 and 2, respectively; and

A ¼ AðxÞ ¼
A1

A2

(

A1 and A2 represent the cross-sectional areas of sub-beams 1 and 2, respectively; and P(x0, t) is a distri-
buted force. In this paper, only the time-dependent response to initial conditions is discussed. In this case,
P(x0, t) ¼ 0.

Thus, the derivative of the shear force Q with respect to time can be calculated by

qQ

qt
¼ �EI

q3V
qx3

.

The system state equation can be described by the following form:

q
qt

Fðx; tÞ ¼ �ĤFðx; tÞ, (3)

where F(x, t) is a state vector representing the velocity V(x, t) and bending moment M(x, t), defined as

Fðx; tÞ ¼ ½V M �T (4)

and Ĥ is the system operator defined as

Ĥ ¼
0 � 1

rA
q2

qx2

EI q2

qx2 0

2
4

3
5. (5)

Eq. (3) can be rewritten by integrating with respect to time

Fðx; tÞ ¼ e�ðt�t0ÞĤFðx; t0Þ, (6)

where e�ðt�t0ÞĤ is named as the AWP and Fðx; t0Þ denotes the initial state vector.

Through the operation of the AWP e�ðt�t0ÞĤ acting upon the initial state vector, we can obtain the state
vector F(x, t) of the acoustical waves at any time t and any position x. In Eq. (5), the material properties E, r,
A and h are functions of position. It is those position-dependent system parameters, which give rise to the
effect of boundaries at the coupling interface of the component beams.

2.2. Implementation of the acoustical wave propagator e�ðt�t0ÞĤ

The crucial step in numerical implementation is the development of an efficient algorithm for performing
the operation of the AWP. The Chebyshev polynomial expansion (CPE) scheme has the significant advantage
that it allows the use of a very long time step. In addition, this scheme has an exponential convergent rate.
More detailed accounts can be found in the Refs. [8,9]. Real Chebyshev polynomials defined in the ranges of
[�1,1] are used in the expansion of the AWP. To ensure the convergence of the Chebyshev expansion, the
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system operation Ĥ needs to be normalized by Ĥ
0
¼ Ĥ=lmax, where lmax represents the maximum eigenvalue

of the system operator Ĥ.
Using Chebyshev polynomials of the first kind, Eq. (6) can be further rewritten as

Fðx; tÞ ¼ I0ðRÞI þ 2I1ðRÞĤ
0
þ 2

X1
n¼2

InðRÞTnðĤ
0
Þ

" #
Fðx; t0Þ, (7)

where R ¼ lmax(t�t0); and In(R) is the nth-order modified Bessel function of the first kind. The Chebyshev

polynomials Tn Ĥ
0

� �
can be obtained by the recursive formula

Tnþ1 Ĥ
0

� �
¼ 2Ĥ

0
Tn Ĥ

0
� �

� Tn�1 Ĥ
0

� �
; where nX2. (8)

In this paper, the following Fourier transformation and its inverse transformation are used to calculate the
spatial derivatives of function Fðx; tÞ:

q2

qx2
Fðx; tÞ ¼ F�1 ðikxÞ

2F ½Fðx; tÞ�
� �

, (9)

where i ¼
ffiffiffiffiffiffiffi
�1
p

; F�1fg and F ½ � represent the inverse Fourier transformation and Fourier transformation,
respectively; and kx is the bending wavenumber along the x-direction. It is noting that Eq. (9) is only given for
the flexural wave components. For near-field wave components, the only difference is reflected by the minus
sign ‘‘�’’, as given by

q2

qx2
Fðx; tÞ ¼ F�1 ðkxÞ

2F ½Fðx; tÞ�
� �

.

The error analysis of the Fourier transformation method for the spatial derivatives has been given in Ref. [13]
to compare with other numerical schemes.

If the spatial sampling interval Dx is chosen to represent the highest frequency component of interest in the
medium, then the bending wave velocity cB can be calculated by cB ¼ o=kx ¼ f1:8cLhf g1=2, where cL and f

represent the longitudinal wave velocity and frequency, respectively; and

h ¼ hðxÞ ¼
h1

h2

(

h1 and h2 represent the thickness of sub-beams 1 and 2, respectively. In addition, the normalization factor R

can be calculated by

R ¼ lmaxðt� t0Þ ¼

ffiffiffiffiffiffiffi
EI

rA

s
p
Dx

� �2
ðt� t0Þ. (10)

2.3. Reflection and transmission coefficients and exact analytical solutions of a stepped beam structure

The prediction accuracy of the Chebyshev–Fourier Scheme developed in the previous section can be
assessed by the exact analytical solutions. The flexural waves in beams have two fundamentally different
modal solutions, which consist of both propagating and evanescent terms. It is useful to analyse the
transmission and reflection of wave packets at a step discontinuity in both cross-sectional area and material
properties, as illustrated in Fig. 2. The elementary differential equation of motion for bending waves can be
represented by

E1I1
q4W 1

qx4
� r1A1

q2W 1

qt2
¼ 0; xp0,

E2I2
q4W 2

qx4
� r2A2

q2W 2

qt2
¼ 0; xX0, ð11Þ
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Fig. 2. Wave propagation with the discontinuity.
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where W1 and W2 are the vertical deflections of sub-beams 1 and 2, respectively; E1I1 and E2I2 are the stiffness
of sub-beams 1 and 2, respectively; and r1A1 and r2A2 are the masses per unit length of sub-beams 1 and 2,
respectively.

Eq. (11) can be rewritten in spectral form by

q4Ŵ 1

qx4
� k4

1Ŵ 1 ¼ 0; xp0,

q4Ŵ 2

qx4
� k4

2Ŵ 2 ¼ 0; xX0, ð12Þ

where k4
1 ¼ o2ðr1A1=E1I1Þ and k4

2 ¼ o2ðr2A2=E2I2Þ.
In this paper, two semi-infinite beams are considered. A complete solution of flexural displacement for sub-

beams 1 and 2 is given by [14]

W 1ðx; tÞ ¼

Z 1
0

Ŵ 1e
iot do ¼

Z 1
0

½Be�ik1x þ Cek1x þDeik1x�eiot do,

W 2ðx; tÞ ¼

Z 1
0

Ŵ 2e
iot do ¼

Z 1
0

½Fe�ik2x þ Ge�k2x�eiot do, ð13Þ

where o is the frequency parameter; k1 and k2 represent the bending wavenumbers of sub-beams 1 and 2
related o, respectively; waves in sub-beam 1 consist of an incident wave Be�ik1x, reflected wave Deik1x and
reflected near-field wave Cek1x (exponentially decaying with distance); and sub-beam 2 contains a transmitted
wave Fe�ik2x and transmitted near-field wave Ge�k2x.

The coefficients C, D, F and G can be calculated by four continuity conditions at the discontinuity

Displacement : W 1 ¼W 2,

Slope :
qW 1

qx
¼

qW 2

qx
,

Moment : E1I1
q2W 1

qx2
¼ E2I2

q2W 2

qx2
,

Shear force : E1I1
q3W 1

qx3
¼ E2I2

q3W 2

qx3
. ð14Þ

According to Eq. (14), Eq. (13) can be written as

Bþ C þD ¼ F þ G,

� ik1Bþ k1C þ ik1D ¼ �ik2F � k2G,

E1I1 �k2
1Bþ k2

1C � k2
1D

� �
¼ E2I2 �k2

2F þ k2
2G

� �
,

E1I1 ik3
1Bþ k3

1C � ik3
1D

� �
¼ E2I2 ik3

2F � k3
2G

� �
. ð15Þ
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Eq. (15) can be rewritten in matrix form by

1 1 �1 �1

1 i iK K

1 �1 K2c �K2c

1 �i �iK3c K3c

0
BBBB@

1
CCCCA

C

D

F

G

0
BBB@

1
CCCA ¼

�B

iB

B

�iB

0
BBB@

1
CCCA, (16)

where

K ¼
k2

k1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A2

E2I2

E1I1

r1A1

4

s

and

c ¼
E2I2

E1I1
.

Therefore, solving Eq. (16) in terms of B yields

C

D

F

G

0
BBB@

1
CCCA ¼

1 1 �1 �1

1 i iK K

1 �1 K2c �K2c

1 �i �iK3c K3c

0
BBBB@

1
CCCCA

�1
�1

i

1

�i

0
BBB@

1
CCCAB. (17)

Further, these coefficients can be obtained by

C

B
D

B
F

B
G

B

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼

ð1� K4c2
Þð1� iÞ

ð1þ K2cÞ2 þ 2Kcð1þ K2Þ

2Kcð1� K2Þ � ið1� K2cÞ2

½ð1þ K2cÞ2 þ 2Kcð1þ K2Þ�

2ð1þ KÞð1þ K2cÞ

K ½ð1þ K2cÞ2 þ 2Kcð1þ K2Þ�

2ðK2c� 1Þð1þ iKÞ

K ½ð1þ K2cÞ2 þ 2Kcð1þ K2Þ�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. (18)

It is noted that there is a sign error in transmission coefficients tj (which characterizes the quasistationary
motion behind the discontinuity) by Cremer et al. [14]. The transmission coefficient tj should be

tj ¼
2ðĉ� 1Þ � i2kð1� ĉÞ

kð1þ ĉÞ2 þ 2ĉð1þ k2Þ
,

rather than.

tj ¼
2ð1� ĉÞ � i2kð1� ĉÞ

kð1þ ĉÞ2 þ 2ĉð1þ k2Þ
.

Where k ¼ K and ĉ ¼ K2c, two coefficients K and C in Eq. (18) can be calculated if the parameters of
this structure and its material properties ðr1;A1;E1; I1; r2;A2;E2; I2Þ are known. Then the beam will behave in
the same way. It is interesting to examine the effects of the beam thickness ratio g ¼ h2=h1 on these coefficients.
In addition, this knowledge is useful to understand how the energy is reflected or transmitted at the
discontinuity.

A full solution of an infinite beam with an initial disturbance imposed on it of the Gaussian waveform is
introduced to further demonstrate the validity of the AWP technique. Generally, an incident Gaussian wave
packet (a superposition of plane waves) is used to simulate the initial impulse or shock excitation. Its wave
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function is given by

W ðx; tÞjt¼0 ¼ f 0e
�
ðx�x0 Þ

2

4s2

� �
; _W ðx; tÞjt¼0 ¼ 0, (19)

where W(x, t) represents the deflection displacement of the beam in the z-direction; and f0, x0 and s represent
the maximum amplitude, the location of the peak of the initial wave packet and Gaussian factor, respectively.
It is noted that s determines the spatial spread of the wave packet and energy width.

The displacement of a single thin beam subject to a Gaussian excitation has the following analytical
solution [15]:

W ðx; tÞ ¼
f 0

ð1þ t2Þ1=4
e
�

m2

ð1þt2 Þ

� �
� cos

m2t
1þ t2

�
1

2
tan�1ðtÞ

� 	
, (20)

where

t ¼

ffiffiffiffiffiffiffi
EI

rA

s
t

s2
and m ¼

x

2s
.

When all the near-field terms are considered, the exact analytical solutions of the displacement of a stepped
beam structure subject to a Gaussian distribution are given by

W 1ðx; tÞ ¼
f 0s

s4 þ a
ð1Þ
z t

� �2
 �1=4
e

�
s2 ðx�x0Þ

2

4 s4þ a
ð1Þ
z tð Þ

2
� 

 !
� cos zð1Þ þ C

B
� e

s2 ðx�x0Þ
2

4 s4þ a
ð1Þ
z tð Þ

2
� 

 !
� cos zðCÞ

þ D
B
� e

�
s2ðxþx0 Þ

2

4 s4þ a
ð1Þ
z tð Þ

2
� 

 !
� cos zð2Þ

2
66666664

3
77777775
,

W 2ðx; tÞ ¼
f 0s

s4 þ a
ð2Þ
z t

� �2
 �1=4 F

B
e

�
s2 ðx�x0 Þ

2

4 s4þ a
ð2Þ
z tð Þ

2
� 

 !
� cos zð3Þ þ

G

B
� e

s2 ðx�x0 Þ
2

4 s4þ a
ð2Þ
z tð Þ

2
� 

 !
� cos zðGÞ

2
6664

3
7775, ð21Þ

where zð1Þ � zð3Þ, z(C), z(G), að1Þz and að2Þz are given in Ref. [16].
Without the near-field terms, the approximate analytical solutions of the displacement for a stepped beam

structure subject to a Gaussian distribution are given by

W 1ðx; tÞ ¼
f 0s

s4 þ a
ð1Þ
z t

� �2
 �1=4 e

�
s2 ðx�x0 Þ

2

4 s4þ a
ð1Þ
z tð Þ

2
� 

 !
� cos zð1Þ þ

1� K

1þ K
� e

�
s2 ðxþx0 Þ

2

4 s4þ a
ð1Þ
z tð Þ

2
� 

 !
� cos zð2Þ

2
6664

3
7775,

W 2ðx; tÞ ¼
2f 0s
1þ K

�
e

�
s2 ðx�x0 Þ

2

4 s4þ a
ð2Þ
z tð Þ

2
� 

 !

s4 þ a
ð2Þ
z t

� �2
 �1=4 � cos zð3Þ. ð22Þ

For example, the bending moment and stress related to Eq. (22) can be calculated by

Mðx; tÞ ¼ �EðxÞIðxÞ
q2W ðx; tÞ

qx2
; sStressðx; tÞ ¼ �

EðxÞhðxÞ

2

q2W ðx; tÞ
qx2

. (23)

The bending moment and stress related to the full exact analytical solution given by Eq. (21) could also be
calculated by using Eq. (23). It is noted that the stress has the same distribution as described in Eq. (23) but is
different between the coefficients I(x) for moment and (h(x)/2) for stress.
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2.4. Effects of near-field waves and beam thickness ratio on reflection and transmission coefficients, and

transmission efficiencies

When the effect of near-field waves is considered, the coefficients in Eq. (18) are complex except for the third
term F/B. Figs. 3 and 4 show the effect of the beam thickness ratio g on the real part and imaginary parts of the
coefficients with near-field terms, respectively. When go1, that is, when waves are being transmitted from a large
beam to a small beam, the value of the coefficient F/B increases. As g increases, its magnitude greatly decreases. It
is also noted that its value is exactly equal to 1 when g ¼ 1. In addition, the coefficient D/B is zero, as shown in
Fig. 3. This means that the incident wave will fully transmit without any reflection when there is no step in the
structure. As g increases further, the coefficient F/B will gradually decrease to zero, whereas, the coefficient D/B
will gradually increase with larger and larger phase change. This could be explained because there was no
transmission if the end of the thin beam is attached to a very big mass. In this case, the incident wave will be
totally reflected. As shown in Fig. 4, the imaginary part of this term is zero, which means the transmitted wave is
always in phase with the incident wave, that is, both waves are travelling in the same direction.

However, the other coefficients may have a phase change. The coefficient D will have the same magnitude as
that of the incident wave B, but with a negative phase change, as shown in Fig. 4. A reflection coefficient is a
structural property, and does not depend on the incident wave amplitude in a linear system. There are many
differences between the near-field terms C/B and G/B, as shown in Figs. 3 and 4. The real parts of the
coefficient C/B and the coefficient F/B have similar relationships with the beam thickness ratio g, apart from a
difference in magnitude. When go1, the two coefficients C/B and G/B have great changes in both magnitudes
and phase, as shown in Figs. 3 and 4. It is worth noting that the real and imaginary parts of the two evanescent
coefficients are zero when g ¼ 1. Furthermore, as g increases, the coefficient G/B (both the real and imaginary
parts) will slowly tend towards zero.

According to the definition provided by Cremer et al. [14], the transmission efficiency t (the ratio of
transmitted to incident power) can be calculated by

t ¼
4Kcð1þ KÞ2ð1þ K2cÞ2

½ð1þ K2cÞ2 þ 2Kcð1þ K2Þ�2
. (24)
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Fig. 3. Effect of the beam thickness ratio on the real part of the transmission and evanescent coefficients.
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Fig. 4. Effect of the beam thickness ratio on the imaginary part of the transmission and evanescent coefficients.
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Fig. 5 shows how the transmission efficiency t varies with the beam thickness ratio g. Around g ¼ 1 marked
by the vertical dotted line, a small difference in thickness does not affect the transmission of bending waves
appreciably. However, large changes in thickness result in significant effects, as shown in Fig. 5. It is noted
that the transmission efficiency t has the same value when g ¼ 0:1 and 10; g ¼ 0:2 and 5; g ¼ 0:3 and 10=3;
g ¼ 0:4 and 2:5, and so on. This demonstrates that the transmission efficiency t will be constant if the beam
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thickness ratio g is given. In other words, the transmission efficiency t from a thin beam to a thick beam is the
same as that from the thick beam to the thin beam, for a given stepped beam.

The following derivation further verifies this conclusion:

tð1=gÞ ¼ t
h1

h2

� 	
¼

4
Kc 1þ 1

K

� �2
1þ 1

K2c

� �2
1þ 1

K2c

� �2
þ 2

Kc 1þ 1
K2

� �
 �2 ¼ 4Kcð1þ KÞ2ð1þ K2cÞ2

½ð1þ K2cÞ2 þ 2Kcð1þ K2Þ�2

¼ tðgÞ ¼ t
h2

h1

� 	
. ð25Þ

For example, tð0:1Þ ¼ tð10Þ ¼ 0:1883, tð0:2Þ ¼ tð5Þ ¼ 0:4823 and tð0:3Þ ¼ tð10=3Þ ¼ 0:7169.
2.5. Transient energy flow in a one-dimensional stepped beam structure

The knowledge of transient energy flow and transmission and reflection coefficients in beams with a sudden
change in cross-section is important in engineering design and other practical applications. Many techniques
are presented in the literature that investigates energy flow and transmission and reflection coefficients. Power
flow analysis (PFA) and statistical energy analysis (SEA) have become widely accepted as useful techniques
for predicting statistical responses of dynamic systems and vibrational energy flow passing through structures
in the frequency domain [17–21]. However, only a few theoretical expressions are available for estimating the
energy flow and coupling loss factors for complex structures in the time domain. It is therefore necessary to
develop an accurate and efficient method to predict the distribution of energy flow and determine the
dominant paths of energy flow through the structure, in particular, reflection and transmission around
discontinuities. This section extends the AWP technique to investigate energy flow in a one-dimensional
structure with a discontinuity. The AWP technique provides a time-domain method to accurately predict
energy flow and coupling loss in complex coupled structures. This analysis also supplies a theoretical
framework that can be used to experimentally measure energy flow and energy loss in beams at the location of
a sudden change in cross-section.

The general analytical solutions of displacement of the above structure are given in the time domain
(Eqs. (13) and (18)). Equations for the intensity I in beams usually indicate the distribution of the energy flow
or power, because they typically use the total flexural stiffness EI of the beam. In addition, the definition of
the intensity I in beams is a little different from that in plates, which usually gives the energy flow per unit
width, because it typically utilizes the flexural stiffness per unit width of the plate. The x components of the
intensities for sub-beams 1 and 2 are made up of the force contribution and the bending moments’
contributions. In the time domain, the energy intensity with exact analytical solutions of a stepped beam can
be calculated by

I ð1Þx ¼ M1
q
qt

qW 1

qx

� 	
þQ1

qW 1

qt

� 	
,

I ð2Þx ¼ M2
q
qt

qW 2

qx

� 	
þQ2

qW 2

qt

� 	
. ð26Þ

The structural intensity given by Eq. (26) is also obtained for the case of a stepped beam subject to a
Gaussian distribution, by using the exact analytical solution of the displacement given by Eq. (21). The
various terms

q
qt

qW 1

qx

� 	
¼

q
qx

qW 1

qt

� 	
¼

qV 1

qx
;
qW 1

qt
;
qW 2

qt
;
qV2

qt

can be obtained by the derivatives of Eq. (21) with respect to time t and spatial variable x. More details can be
found in Ref. [16]. The predicted results obtained by the AWP technique can be compared with those
analytical solutions to examine its accuracy and efficiency.
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3. Numerical analysis and discussions

For simplicity, the two sub-beams are assumed to be made of the same materials. Their material properties
are E ¼ 21.6� 1010N/m2, and r ¼ 7800 kg/m3. The parameters of the beams are xL ¼ 10m, h1 ¼ 0.002m,
h2 ¼ 0.005m, A1 ¼ 4� 10�5m2 and A2 ¼ 1� 10�4m2. The initial displacement and discontinuity are located
at x0 ¼ �1m and xd ¼ 0m, respectively.

In this simulation, the time step in the Chebyshev–Fourier scheme is dtCh ¼ 0:0001 s. Sixty terms of
Chebyshev polynomials are used in the expansion. The following initial state vector is chosen to demonstrate
the application of the AWP

Fðx; 0Þ ¼
0

Mðx; 0Þ


 �
, (27)

where M(x,0) is related to the initial displacement W ðx; 0Þ ¼ f 0e
� ðx�x0Þ

2=4s2ð Þ. Other simulated parameters are
given as follows: f0 ¼ 0.001m, s ¼ 0:1, and the number of grid points N is 100. The spatial sampling interval
Dx is 0.1m. The evolution of wave packet and reflected waves is observed with �6mpxp4m.

For a sharp discontinuity, this thickness discontinuity will pose the numerical difficulity of calculating the
moments and stress terms. To assure numerical convergence, a boundary-smoothing technique was introduced
by using the convolution with a Gaussian function G(x)

h̄ðxÞ ¼
1

2p

Z
hðtÞGðtÞe�ixtdt ¼ F�1 F ½hðxÞ�F e�ððx�xÞ2=s2Þ

h in o
, (28)

where s denotes a Gaussian factor. It is critical to choose a suitable grid size N and s to meet the demands of
numerical convergence and computational efficiency. More details of the effect of grid size N and s on
numerical convergence and computational efficiency are discussed in Ref. [9].

3.1. Comparison of the predicted results between the Chebyshev– Fourier scheme and exact analytical solutions

Fig. 6 presents the displacement error (unit: mm) between the results predicted by the AWP technique and
the exact analytical solution at t ¼ 0:034 s for g ¼ 1 (without the stepped discontinuity). It is found that the
AWP technique is highly accurate and computationally effective due to the wave packet evolution with large
time steps. Furthermore, Fig. 7 shows the comparison of the displacement predicted by the Cheby-
shev–Fourier scheme with the exact analytical solution for g ¼ 2:5 at different instants. At t ¼ 0:007 s, the
incident waves reach the discontinuity, which result in reflected waves. The absolute error of the displacement
(unit: mm) is in the order of 10�5. As time increases, more incident waves result in reflected waves, and more
waves propagate into sub-beam 2 by passing through the discontinuity. As shown in Fig. 7(b), the two curves
still agree very well. At t ¼ 0:034 s, the effect of the introduced boundary-smoothing technique can be seen in
Fig. 7(c). The error analysis of the AWP method has been undertaken in details in a published paper (Ref. [9]).
It has been found that the error is controlled by the shapes and numbers of grids of the smooth and
continuous curves in replacing the original discontinuities in the system parameters.

3.2. Wave propagation and stress distribution

Fig. 8 shows the evolution of the displacement W(x, t) at different instants by the AWP technique. The
discontinuity is located at xd ¼ 0m, as shown in Fig. 1. The initial displacement with a Gaussian distribution
is shown in Fig. 8(a). As time increases, the wave packets spread out to the two ends with decreased
magnitudes. At t ¼ 0.007 s, the wave reaches the discontinuity, which results in reflected waves. Due to the
effect of reflected waves, the transmitted waves in sub-beam 2 continue to propagate with smaller magnitudes
than those in sub-beam 1. The displacements with larger values exist from –2 to 0m, as shown in Fig. 8(f).

Fig. 9 shows the distribution of the stress s at different instants. An initial stress is illustrated in Fig. 9(a).
The difference is that the transmitted waves at sub-beam 2 have larger magnitudes than those at sub-beam 1.
As time increases, the magnitudes decay slowly, as shown in Figs. 9(e) and (f). It is noted that the effect of
reflected wave on the stress is limited to near-fields (from �2 to 0m) at sub-beam 1 because the reflected wave
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has not yet reached the far-field regions. The total stress is simply the sums of the stresses due to he individual
waves, so the reflected wave will influence the stress levels when it reaches the far-field region. However, this
influence maybe small if the reflection coefficient is small and/or damping is large, but it will be present. The
magnitudes of the stress in sub-beams 1 and 2 are shown in Figs. 9(d)–(f).

Fig. 10 shows energy intensities in a stepped beam structure at different instants. A zero initial energy
intensity including both moment and shear terms is illustrated in Fig. 10(a). The reason for the zero initial
energy intensity is that the initial velocity is zero. As time increases, the moment term has a different
distribution from the shear force term, as shown in Figs. 10(b)–(f). The total energy intensity is a combination
of the moment term MðqV=qxÞ and shear force term F ðqW=qtÞ. One observation is that total energy
intensities are dominated by the moment term near the discontinuity, and the shear force term away from
the discontinuity before waves pass the discontinuity or just pass through the discontinuity, as shown in
Figs. 10(b) and (c). As time further increases, waves propagate within the whole structure.

Effects of the moment term MðqV=qxÞ and shear force term F ðqW=qtÞ on total energy intensities are totally
different. In other words, total energy intensities are dominant by the shear force term near the discontinuity,
and the moment term for the rest, as shown in Figs. 10(e) and (f). This observation cannot be explained by
only considering distributions of the bending moment and shear force. In addition, distributions of the term
qV=qx (derivative of velocity with x) and velocity V should be considered to investigate the effect of the
moment term MðqV=qxÞ and shear force term F ðqW=qtÞ on energy intensity or energy flow. Another
interesting observation is that the magnitude of energy intensity in Fig. 10(d) is much higher than those in
other figures. One explanation is that, at this instant, both the moment term and shear force term have the
biggest magnitudes when waves with the maximum magnitude pass through the discontinuity. It is noted that
the remaining distributions (excluding the maximum value in Fig. 10(d)) have much lower magnitudes
compared with those at other instants, as shown in Figs. 10(b), (c), (e) and (f). To further explain the above
observation, distributions of the bending moment M and the angular velocity qV=qx are shown in Figs. 11
and 12, respectively. Both the bending moment and angular velocity with large amplitudes are found near the
discontinuity (far away to x ¼ �2m), as shown in Figs. 11 and 12. Therefore, for this case, the reflective wave
is in phase with the incident wave during the scattering period, as a result the corresponding intensity has
larger value close to the discontinuity. Although the angular velocity has larger amplitude further away from



ARTICLE IN PRESS

-6
-5

-4
-3

-2
-1

0
-0

.2

-0
.10

0.
1 0.
2

0.
3

0.
4

0.
5

0.
6

Displacement W (x,t) (mm)

-0
.2

-0
.3

-0
.10

0.
1

0.
2

0.
3

0.
4

Displacement W (x,t) (mm)
-0

.2

-0
.3

-0
.10

0.
1

0.
2

0.
3

0.
4

Displacement W (x,t) (mm)

E
xa

ct
 a

n
al

yt
ic

al
 s

o
lu

ti
o

n

A
W

P

t 
= 

0.
00

7 
s

X
 (

m
)

X
 (

m
)

X
 (

m
)

-6
-5

-4
-3

-2
-1

0

-6
-5

-4
-3

-2
-1

0

E
xa

ct
 a

n
al

yt
ic

al
 s

o
lu

ti
o

n

A
W

P

t 
= 

0.
01

7 
s

E
xa

ct
 a

n
al

yt
ic

al
 s

o
lu

ti
o

n

A
W

P

t 
= 

0.
03

4 
s

(a
)

(c
)

(b
)

F
ig
.
7
.
C
o
m
p
a
ri
so
n
o
f
th
e
re
su
lt
s
p
re
d
ic
te
d
b
y
th
e
A
W
P
te
ch
n
iq
u
e
a
n
d
th
o
se

o
b
ta
in
ed

w
it
h
ex
a
ct

a
n
a
ly
ti
ca
l
so
lu
ti
o
n
s
fo
r
g
¼

2
:5

a
t
d
if
fe
re
n
t
in
st
a
n
ts
.

S.Z. Peng, J. Pan / Journal of Sound and Vibration 297 (2006) 1025–1047 1037



ARTICLE IN PRESS

0 s t =

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t = 0.007 s

t = 0.012 s

t = 0.022 s

t = 0.017 s

t = 0.034 s

-0.2

0

0.4

0.2

0.6

0.8

1

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

-0.2

-0.3

-0.1

0

0.1

0.2

0.3

0.4

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

-0.2

-0.3

-0.1

0

0.1

0.2

0.3

0.4

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

-0.2

-0.3

-0.1

0

0.1

0.2

0.3

0.4

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

-0.2

-0.1

0.1

0

0.2

0.3

0.4

0.5

D
is

p
la

ce
m

en
t 

W
(x

,t
) 

(m
m

)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x (m)

Discontinuity

Discontinuity

Discontinuity

Discontinuity

Discontinuity Discontinuity

(a) (b)

(d)
(c)

(e) (f)

Fig. 8. The predicted results of the displacement W(x, t) at different instants.

S.Z. Peng, J. Pan / Journal of Sound and Vibration 297 (2006) 1025–10471038
the discontinuity (x ¼ �5 to �2m) after t ¼ 0.017 s, the reflected waves of bending moments have much
smaller amplitudes. Thus, their products of the bending moment and angular velocity still have smaller values.
Similarly, distributions of the shear force F and velocity V can be done to support the above observation in
Fig. 10: the shear component dominate further away from the discontinuity. The above analysis is very helpful
to get a good understanding of vibration characteristics of structures.
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3.3. Experimental analysis of a stepped beam structure

An experimental analysis is carried out to investigate the reflection and transmission of bending waves at a
discontinuity in cross-section in a stepped beam structure. The experimental results are presented here and
compared with theoretical predictions. Through this kind of comparison, the validity of theoretical prediction
as described in previous sections can be verified. Measurements of bending pulses were made on a stepped
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beam by using accelerometers and strain gauges. As shown in Fig. 13, a stepped beam is used in the
experiment. The stepped beam is made of steel. The cross-sections of smaller beam and larger beam are,
respectively, 10mm� 6mm with length of 100mm, and 25mm� 6mm with length 400mm (. The distances
from points A, B and C to the end of smaller beam are 10mm, 50mm and 130mm, respectively. One end of
the beam is wrapped with soft material and buried in a box with soft sand (dimensions with length, width and
height are 300� 200� 250mm), which will provide an effective absorption for all wave types. To increase the
structural stability and holding strength of the sand box, an extra holder at the end of the larger beam is
specially designed and immersed in this sand box. The above experimental technology is usually used to
simulate a semi-infinite beam. The other end of the smaller beam is supported by a fine steel wire. To clearly
record the incident, the reflected and the transmitted pulses from a single impact, a small steel ball (4mm
diameter) fired from a spring-powered gun is used to strike the centre of one end of this structure. This
instrument provides the consistent impact force during the whole measurement. For bending waves, the
impact position is chosen as close to the end of the smaller beam as possible to produce flexible bending
motions, as shown in Fig. 13. Travelling along the beam, the wave continually changes its amplitude and
shape due to damping losses and wave dispersion. If these changes are negligible, the wave will propagate with
a constant amplitude and shape. It is noted that the experimental investigation is carried out to study the
flexible wave propagation, reflection and transmission from smaller beam cross-section to larger cross-section.
Through another experimental set-up (smaller beam is buried in the sand box and larger beam is hung by a
fine steel wire), the similar analysis can be carried out to investigate flexible wave propagation, reflection and
transmission from larger beam cross-section to smaller cross-section, and hence the effect of a discontinuity on
the wave propagation.

Accelerometers are often preferred due to their reusability, ease of installation, wide band frequency and
dynamic response. Two accelerometers are mounted on sub-beam 1 and sub-beam 2, as shown in Fig. 13. One
accelerometer is used to record the incident and reflected pulses. The other is used to record the transmitted
pulse. To increase measured accuracy and efficiency, a multi-channel data acquisition system with Waveview
software and de-noising technique is used to record the incident, the reflected and the transmitted pulses for a
single impact.

The recording window is adjusted as so that only the incident and reflected waves from the change in cross-
section appear on the scope screen. From the whole record, it is found that the reflection from the end in the
sand box can be neglected. As mentioned above, the measured variable (acceleration, velocity and
displacement) is primarily related to motion and gives only indirect information about stress within the
material. Strain gauges, on the other hand, are preferably applied for low-frequency and medium-dynamic
measurements. In making measurements, the strain gauges are properly connected with a specific amplifier
circuit for measuring symmetrical strains. Then the small end of the beam is struck at its centre, and the
incident, reflected, and transmitted pulses are measured.

Since the experimental results, which will be compared with the predicted results, are based on
measurements of strain, which are proportional to moment, it is necessary to see how reflection and
transmission coefficients for displacement are related to the corresponding quantities for moment. It is easily
shown that

M1ðx; tÞ ¼ E1I1ðk1Þ
2 Be�ik1x � Cek1x þDeik1x
� 

eiot,

M2ðx; tÞ ¼ E2I2ðk2Þ
2 Fe�ik2x � Ge�k2x
� 

eiot. ð29Þ
Point A

Accelerometer 1

Strike point 

Foam damping material Damper

Accelerometer 2Strain gauges 

Point BPoint C

Fig. 13. Experimental set-up for a stepped beam structure.
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D/B represents the amplitude ratio of the reflected moment relative to the incident moment, which is only
true in the absence of near-fields. Here, if the contributions of the reflected and near-field waves are ignored,
then Eq. (29) can be rewritten as

M1ðx; tÞ ¼ E1I1ðk1Þ
2 Be�ik1x
� 

eiot;

M2ðx; tÞ ¼ E2I2ðk2Þ
2 Fe�ik2x
� 

eiot:
(30)

Thus, the ratio of the transmitted moment to the incident moment is

E2I2ðk2Þ
2F

E1I1ðk1Þ
2B
¼ K2c

F

B
. (31)

The maximum strain often happen on the surfaces of the structure, thus they are given by

�ð1Þmax ¼ �
h1

2

q2W 1

qx2
; �ð2Þmax ¼ �

h2

2

q2W 2

qx2
. (32)

Therefore, they can be rewritten as

�ð2Þmax

�ð1Þmax

¼
h2ðq

2W 2=qx2Þ

h1ðq
2W 1=qx2Þ

¼
h2M2

h1cM1
¼

h2K
2

h1

F

B
. (33)

As shown in Eq. (29), the ratio M2/M1 involves wave amplitudes B, C, D, F and G. Here, only two dominate
wave amplitudes B and F are considered in Eq. (31) to compare with the ratio of measured strains. In other
words, these omitted terms can be assumed zero with safety due to ‘‘gating’’ of the signal or distance from the
discontinuity. Hence F/B multiplied by the constant

h2

h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A2E1I1

r1A1E2I2

s
,

when the structural materials are known, represents the ratio of the amplitude of the transmitted bending
strain to the amplitude of the incident strain, and comparisons of amplitudes can be directly made from the
strain measurements. For a special case, the stepped beam is made of the same material, thus Eq. (33) can be
simplified into �ð2Þmax=�

ð1Þ
max ¼ F=B, which means the ratio of the amplitude of the transmitted bending strain to

the amplitude of the incident strain can be directly obtained from the strain measurements.
Fig. 14 shows the effect of beam thickness ratio on the ratio of the amplitude of the transmitted bending

strain in sub-beam 2 to that of the incident strain in sub-beam 1. For a special case g ¼ 1 (uniform beam
without any step), the strain ratio is 1 providing that light material damping and energy radiation into air are
neglected, as shown in Fig. 14. For a pair of beams having a thickness ratio of g ¼ 2:5, the strain ratio and
theoretical predictions for reflection and transmission coefficients (propagating from the small end toward the
large end) are

gStress ¼ 0:5;
D

B

����
���� ¼ 0:19;

F

B

����
���� ¼ 0:59. (34)

Fig. 15 shows experimental results for flexural waves at three measured points A, B, and C on the stepped
beam structure, as shown in Fig. 13. Fig. 15(b) has the similar pattern as Fig. 15(a) except for a little difference
in magnitude. Qualitatively, if we neglect material damping, energy radiation into air and the effects of
dispersion, the result at point B should have the similar distribution as that at point A. It is noted that point B

will differ from point A not only by a time delay (propagating time from point A to point B), but also in the
magnitude and phase due to the dispersive system. Experimental results in Figs. 15(a) and (b) also support the
above analysis. Due to the discontinuity, reflection waves can be clearly seen in both Fig. 15(a) and Fig. 15(b).
It is worth noting that the experimental results in Fig. 15 were obtained under the same impact. In other
words, with multi-channel measuring systems, the results of points A, B and C can be simultaneously
obtained. Therefore, Fig. 15 shows the measured results normalized by the magnitude of the first positive peak
of experimental result at measuring point A.
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Fig. 15. Experimental results for flexural waves in a stepped beam structure.
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Comparisons of the peak amplitudes shown in Fig. 15 yield

gStress � 0:4;
D

B

����
���� � 0:21;

F

B

����
���� � 0:50. (35)

In general, the agreement between predicted and measured results is quite good.
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4. Conclusions

In this paper, a new numerical method is introduced to describe the time-domain evolution of wave packets
in a stepped beam structure. The acoustical wave propagator (AWP) is derived and implemented by
combining the Chebyshev polynomial expansion and fast Fourier transformation. Numerical accuracy of the
AWP method is examined and compared with the exact analytical solutions. This scheme is found to be
accurate and computationally effective for the prediction of the time-domain evolution of acoustical waves. In
addition, the time-domain wave propagation, reflection and transmission coefficients, energy flow and
transmission efficiency in one-dimensional discontinuity structures with two semi-infinite and finite structures
are derived, respectively. These predicted results were compared with those obtained experimentally, and there
was found to be very good agreement between the predicted and measured results.
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